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The stability of an axisymmetric vortex with a single radial discontinuity in potential 
vorticity is investigated in rotating shallow water. It is shown analytically that the 
vortex is always unstable, using the WKBJ method for instabilities with large 
azimuthal mode number. The analysis reveals that the instability is of mixed type, 
involving the interaction of a Rossby wave on the boundary of the vortex and a gravity 
wave beyond the sonic radius. Numerically, it is demonstrated that the growth rate of 
the instability is generally small, except when the potential vorticity in the vortex is the 
opposite sign to the background value, in which case it is shown that inertial instability 
is likely to be stronger than the present instability. 

1. Introduction 
The appearance of coherent vortical structures in simulations of two-dimensional 

turbulence, started from random initial conditions, is a familiar phenomenon (Polvani 
et al. 1994; Dritschel 1993; Carnevale et al. 1991). Although complex dipolar and 
tripolar vortical structures have occasionally been observed (e.g. Legras, Santangelo & 
Benzi 1988), the majority of vortices which form appear to be monopolar, consisting 
of potential vorticity of one sign only relative to the background value. Moreover, the 
stripping mechanism suggests that in many cases such vortices will tend to have almost 
uniform potential vorticity within, and a sharp edge where the potential vorticity 
changes abruptly (Legras & Dritschel 1993). In any case, a vortex with uniform 
potential vorticity within and uniform background potential vorticity outside 
constitutes the simplest possible case for investigation. Since this paper is the first to 
deal with this instability in rotating shallow water, we shall consider only the simplest 
cases, and consequently all vortices considered in this paper are of uniform potential 
vorticity . 

Questions have naturally arisen as to the stability of such structures, especially in the 
case where the basic vortex may be assumed to be axisymmetric. In the case of the two- 
dimensional Euler equations and the quasi-geostrophic equations, axisymmetric 
vortices whose potential vorticity varies monotonically with radius can be shown to be 
both linearly stable and nonlinearly stable in the sense of Arnol’d (Dritschel 1988). 
However, both the two-dimensional Euler and quasi-geostrophic equations admit only 
vortical motions, in which knowledge of the potential vorticity field is sufficient to 
determine uniquely all the other dynamical information. In geophysical fluid dynamics, 
these equations are generally used as approximate equations for the evolution of the 

t Current address: Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093- 
0225, USA. 
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fluid, valid in the asymptotic limits of small Froude number and/or small Rossby 
number. The full equations of motion in geophysical fluid dynamics admit both 
inertio-gravity wave and acoustic wave motions in addition to vortical motions 
(although it may be argued on scaling grounds - see, e.g. Gill (1982) - that the acoustic 
waves are not significant). It is therefore of interest to investigate the stability of 
axisymmetric vortices in a system of equations which admit both vortical motions and 
inertio-gravity waves, and may be studied in the limits of small Froude number and 
small Rossby number. 

The rotating shallow-water equations are the simplest set of equations which admit 
both vortical motions and inertio-gravity waves, and are thus the simplest set of 
equations in which the potential vorticity field is not sufficient to determine all the other 
dynamical information. Axisymmetric vortices of the type described above (i.e. with 
uniform potential vorticity in their interior) in the rotating shallow-water equations 
depend on two parameters : the Rossby number Ro, which is characterized by the ratio 
of the magnitude of the potential vorticity discontinuity at the boundary of the vortex 
to the background value of potential vorticity, and the Froude number I;, which is the 
ratio of typical velocities in the vortex to the gravity wave phase speed. 

A general stability theorem for axisymmetric shallow-water vortices was given by 
Ripa (1987). It was derived by variational methods, and therefore provides a sufficient 
condition for stability. The condition is that the axisymmetric flow, with radial 
coordinate Y axisymmetric about r = 0, and with azimuthal velocity V(r) and height 
field H(r) ,  is stable if 

(V-  hr)2 < H(r) ,  

dQ (V-hr)- > 0, 
dr 

for some A, where Q = (f+dV/dr+ V / r ) / H ( r )  is the potential vorticity in the basic 
state. In the case of an isolated vortex in unbounded shallow water, (1) can only be 
satisfied if h = 0. Then, if the vortex is cyclonic, with the potential vorticity inside the 
vortex exceeding the value outside, we would expect the azimuthal velocity V(r) at the 
boundary of the vortex to be anticlockwise, i.e. positive. Consequently, VdQ/dv will 
be zero everywhere except at the boundary of the vortex, where it will be negative. 
Similarly, if the vortex is anticyclonic, with dQ/dr > 0, we expect V(r) < 0 at the vortex 
boundary. In either case, V(r>dQ/dr < 0 at the vortex boundary, and (2) is not 
satisfied. Therefore it is not possible to obtain any stability results for an axisymmetric 
vortex with a monotonic potential vorticity profile by variational methods, no matter 
how small the Froude and Rossby numbers might be.? This is in stark contrast to the 
two-dimensional Euler and quasi-geostrophic equations, in which variational methods 
are sufficient to prove the stability of axisymmetric vortices with a monotonic potential 
vorticity profile. 

An instability of axisymmetric vortices with monotonic potential vorticity was first 
discovered by Broadbent & Moore (1979), who demonstrated numerically that a 
Rankine vortex in a compressible fluid is unstable to two-dimensional perturbations 
for all non-zero Mach numbers, up to the point at which the vortex core evacuates. The 
Rankine vortex has uniform vorticity, rather than potential vorticity, but the potential 
vorticity in the vortex can be shown to be monotonic for all Mach numbers. The two- 
dimensional compressible gas equations are equivalent to the shallow-water equations 

t Ripa’s theorem is the analogue of Arnol’d’s first theorem, in which the second variation is 
required to be positive for stability. It is straightforward to show that, for the shallow-water system, 
no analogue of Arnol’d’s second theorem can exist, in which the second variation is required to be 
negative. 1 thank T. G. Shepherd and T. E. Dowling for discussions on this point. 
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in the limit of no background rotation, provided the ratio of specific heats y = 2. The 
acoustic waves in the compressible gas equations are the analogues of gravity waves in 
the shallow-water equations. Although Broadbent & Moore’s numerical results took 
y = 1.4, it seems likely that the same instability mechanism would be found with y = 2. 
Additional modes for the Rankine vortex were found by Sozou (1987). However, it is 
shown in Ford (1993) that these modes owe their existence to the non-uniform 
potential vorticity in a Rankine vortex at non-zero Mach number, and are therefore 
excluded from the present study. The contribution of the present paper is to investigate 
the nature of the instability found by Broadbent & Moore when the Coriolis force is 
present. The instability found by Broadbent & Moore is also of interest in the stability 
of accretion discs, studied first by Papaloizou & Pringle (1984, 1985, 1987), and more 
recently extended to the nonlinear regime by Shukhman (1991) and Williams (1992). 

In the remainder of this paper, the instability of an axisymmetric vortex with a single 
discontinuity in potential vorticity is investigated. In $2, the instability problem is 
formulated, and the perturbation equations are presented. In $3, the instability is 
analysed at small Froude number. The present results agree with those of Broadbent 
& Moore (1979) in the casef= 0, since vorticity and potential vorticity are the same 
in the limit F+O, and the value of y is not important to the growth rate of the 
instability at leading order in F or M. In $4 the growth rates of the instability are 
obtained numerically. The results at finite Froude number now differ from those of 
Broadbent & Moore (1979) at finite Mach number, in that in this study the potential 
vorticity, rather than vorticity, is taken to be constant within the vortex. This prevents 
the evacuation of the basis state at large F found by Broadbent & Moore. Moreover, 
the Coriolis force is present, and as the background rotation ratefis increased, the low- 
mode-number disturbances to the vortex cease to be unstable. In § 5, a WKBJ analysis 
of the instability is performed, and it is found that large-mode-number disturbances to 
an axisymmetric vortex are always unstable, no matter how small the Froude and 
Rossby numbers might be. As pointed out by Knessel & Keller (1992) in another 
context, the WKBJ analysis helps to reveal the mechanism of the instability, as well as 
establish its existence. A WKBJ analysis for the related problem in accretion discs was 
undertaken by Papaloizou & Pringle (1987) - the principal difference between their 
analysis and the present one being that they obtained the growth rate of the instability 
via an energy argument, whereas in this paper it is obtained explicitly by carrying 
exponentially small terms in the asymptotic expansions for large mode number. The 
mechanism of the present instability is discussed in $6, and the relevance of this work 
to the question of existence or non-existence of a slow manifold for the shallow-water 
equations in the sense of Leith (1980) is discussed. 

2. Formulation of the problem 

water. The rotating shallow-water equations are 
This paper addresses the instability of axisymmetric vortices in rotating shallow 

(3) 
aU 
- -+u.Vu+fk x u+gVh = 0, 
a t  

ah 
-+V.(hu)  = 0, 
at 

(4) 

where u is the two-dimensional velocity field, h is the layer depth, f is the inertial 
frequency, g is the acceleration due to gravity, and k is a unit vector perpendicular to 
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the (x,y)-plane. In genera1,fis a function of position, but in this paper we shall take 
f to be constant (commonly referred to as the $plane approximation). The equations 
are then non-dimensionalized, taking vortex radius as the lengthscale, and (vortex 
radius)/(azimuthal velocity in vortex) as the timescale. The inertial period, 27c/f, and 
Rossby deformation radius, (gh( co))l/2f, are not used to non-dimensionalize the 
problem, since they are singular in the limitf= 0 which was studied by Broadbent & 
Moore (1979). Since the problem is clearly well defined in the limitf+O, we do not use 
a scaling which is singular in that limit. The gravitational acceleration, g ,  can be 
absorbed into the height field, and the resulting non-dimensional rotating shallow- 
water equations are 

( 5 )  
a2.4 
-++*Vv~+fk x u+Vh = 0, 
at 

F 2  -+V (hu) + V - u = O ,  (: - ) 
where now F is the Froude number, fmay be regarded as an inverse Rossby number, 
and F2h represents the departure of the total layer depth from the mean layer depth, 
which is unity, so the total layer depth H is given by H = 1 + F2h. The potential 
vorticity is then given by ’= l + F 2 h  ’ 

(7) 
f + k * V x u  

2.1. The basic state 
Equations for the basic state of an axisymmetric vortex can then be written : 

dh v”” 
- =fu+-, 
dr r 

dv u -+- = Q(l  +F2h)-f, 
dr r 

where the overbar represents the basic-state value of 
(9)  must be solved sub-ject to regularity conditions at r 

(9)  

the field. Equations (8) and 
= 0, and decay conditions as 

r + co. The nonlinearity in (8) means that we must use numerical means to solve (8) and 
(9) ,  except in the limit F<< 1, where they can be solved by matched asymptotic 
expansion. 

The free parameters in the problem are f and F. The non-dimensionalizations allow 
us to take the vortex to be of unit radius, and the potential vorticity jump across the 
boundary of the vortex to be of unit strength. The layer is of unit mean depth. Then 
Q =ffor  r > 1, and Q = f + l  for r < 1 .  

2.2. The disturbance equations 
Disturbance equations are derived for a single azimuthal wavenumber rn and frequency 
u, so that the disturbance variables are expressible in the form g(r)eimePiot. The 
disturbance equations are 

ivv, - (f+ 2u/r)  ve + - = 0, (10) 
dh 
dr 

1 .  
r 

icrv,+Q(l+F2h)v,.+-irnh = 0, 

F2(i~.h+(fu+u2/r)v , )+(l  +F2h) 
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where c = - w + mii/r, and v,., vB and h are the perturbation radial velocity, azimuthal 
velocity and height fields respectively. This set of equations must be solved subject to 
regularity conditions at r = 0, and a radiation/evanescence condition as r -+ co. 

The equations (lo)-( 12) contain only two radial derivatives, and therefore represent 
a second-order differential equation for the eigenfunctions. If one chooses u, and h as 
variables, vo must be obtained from (1 1). The possibility of a critical layer at u = 0 
makes it impossible to ensure, without further analysis, that this will be a successful 
method. Instead, we choose to eliminate h. After some algebra, one obtains a pair of 
first-order ordinary differential equations for the eigenfunctions : 

where 
F'aQr 1 d 

A(r) = In H,  m r dr 

iF2a2r im 
B(r) = ---, 

Hm r 

iF2HQ2r im iHdQ 
m r c dr 

C(r) = +-+--, 

and H =  1+F2h. 
The advantage of this formulation over the standard formulation (10)-(12) is that 

the critical-layer singularity a = 0 occurs only where there are radial gradients of the 
basic-state potential vorticity Q(r).t If the potential vorticity gradients are confined to 
a single discontinuity in potential vorticity at the vortex boundary, then the 
eigenfunction equations are non-singular, and at the vortex boundary we impose 
continuity of h and v,. Dividing (1 1) by v,., we thereby obtain a continuity equation 

where [a] represents the jump in a quantity a: across the vortex boundary. 

3. The limit F 4 1 
Before proceeding to numerical calculation of the eigenvalues of the system 

(13)-(18), we consider the limit F < 1. In this limit, an interpretation is possible in 
terms of the Lighthill theory of aerodynamic sound generation (Lighthill 1952). 
Perturbations to the boundary of an axisymmetric vortex excite gravity waves on a 

t If the equations had been retained in their standard form (10)-(12) and the neighbourhood of 
g = 0 analysed, we would have found that the apparent singularity was actually removable provided 
dQ/dr was zero at g = 0. There is no physical difference between the two formulations, but the latter 
formulation, with no apparent singularity, is better suited to numerical computation. 
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lengthscale of order F-' longer than the vortex lengthscale. The resulting energy flux 
implies that the vortex loses energy. Since the axisymmetric vortex is an energy 
maximum for the two-dimensional incompressible fluid equations, the perturbations to 
the vortex boundary must grow in response to loss of energy to infinity by acoustic 
wave radiation. This point of view was first proposed by Kop'ev & Leont'ev (1983). 
However, in this section we will not appeal to energy arguments, and rely rather on the 
full details of the matched asymptotic analysis to obtain the growth rates of the 
instability. 

3.1. The basic state 
We begin our analysis by establishing the form of the basic state from considering the 
basic-state equations ( 8 )  and (9) in the limit F 4 1 .  From the analyses of Crow (1970) 
and Ford (1993) ,  we require two asymptotic regions: r = O(1) and r = O(F-'). 

We begin with the region r = O(1). We expand 

V =  Uo+F2~z+. .  ., (20) 

h= ho+F2hz+ . . . .  (21) 

Here we allow for the possibility that the matching conditions might introduce 1nF- 
terms into the expansions (20) and (21). Substituting (20) and (21) into (9), and 
imposing regularity at r = 0, and r-l decay as r +  co, we obtain expressions for v and 
h at leading order in F: 

(22) 

where C, and C, are constants, to be determined by continuity of fi0 at r = 1 ,  and 
matching to the outer solution. 

Proceeding now to the outer region, we define a long-range variable R = Fr. Since 
v0 - r-l as Y + co, we rescale go by F, so 

i r  for r < I = {:(2f+ 1) r2 + C, for r < 1 
fflnr-+r-2+C2 for r > 1, q) = 1 -1 { %r for r > 1, 

h, = H(R)  + O(F2), 

Uo = FV(R) + O(F3). 
(23) 

(24) 

Then substituting (23) and (24) into (8) and (9), and imposing decaying boundary 
conditions as R+oo and matching conditions to the solution (22) in the vortical 
region, V(R)  and H(R)  are given by 

V(R) = f IflK,(lflR>; H(R) = - f fKJ( l f lR>,  (25) 

where KO and K, are the modified Bessel functions of order zero and one respectively. 
For small R, we have 

(26) 

(27) 

Note the appearance of the In F-term. This means that the expansion for h,, starts with 
a constant term of O(1nF). Then finally 

(28) 

H(R) = ff(ln (p IflR) + y )  + O(R2 In R), 

C, = ff(1n (f I f lF)  + y ) .  and matching to (22) gives 

C, = ff(1n (; IflF) + Y )  -a (f+ 1 ) .  

The analysis presented is valid in the limitf+O, in which limit 

(29) 
1 

2R 
V(R) = -; H ( R )  = O(F2);  C, = -:; C, = 0. 
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Having obtained the leading-order solutions for Uo and 6, in both asymptotic 
regions, we could now go on to develop perturbation expansions to obtain equations 
for c2, h, . . . . However, as we shall see, higher-order terms in the asymptotic expansions 
for u and h are not required to compute the growth rate of the instability, and serve 
only to correct the real part of the eigenfrequency. Indeed, the expression for 6, is not 
essential to the F < 1 analysis, although it is required to initialize the numerical 
eigenvalue calculations in the F < 1 limit. 

3.2. The disturbance equations 
As for the analysis of the basic state, we expand the perturbation radial and azimuthal 
velocities v, and vo in asymptotic series, with F2 as the expansion parameter. The 
asymptotic expansions are matched between two regions, with range variables r and 
R = Fr as before. Additionally, the eigenvalue w must be expanded in powers of F 2 ,  
with logarithmic terms as necessary. 

Substituting (1 5)-( 18) into (1 3) and (14) in the limit F < 1 gives equations for v, and 
v@: 

1 im 
dr r r Or - - vg, 
dv,- - -- 

dv, - im 1 
- - -v,--vVg. 
dr r r 

Regularity as r --f 0 implies that we take an eigenfunction of form (32) in r < 1. Decay 
as r -t co implies that we take an eigenfunction of form (33) in r > 1. Then, substituting 
into the continuity equation (19) gives w = mU(l)-$ In the limit F = 0, perturbations 
to the boundary of an axisymmetric vortex with uniform potential vorticity were 
analysed by Kelvin (1880), who found that the eigenfrequency wo of the disturbances 
was given by 

The present result is consistent with Kelvin’s since, from (22), ~ ( 1 )  = f+ O(F2), and (34) 
thus gives the leading-order eigenfrequency for the present problem. 

Rather than proceeding to consider higher orders in F in  the inner expansion, we will 
now consider the leading-order outer expansion. There the disturbance equations are 

wo = i(m- 1). (34) 

They have solution 

if2R im 
(34) 

(37) 1 m 
v, = A iwohH,~,(hR)-i-(wo+f)H,(hR) , L R 

00 = ‘4 [ ~ H m - , ( h R ) - ~ ( ~ , , + t ) H , ( n R ) 1 .  (38) 

where h2 = ( w i  - f 2 ) ,  H, is a Hankel function of degree m, of the first or second kind, 
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and A is an arbitrary constant. The kind of the Hankel function is chosen to give 
radiation conditions at infinity. With e@" time dependence, one chooses Hankel 
functions of the first kind for radiation conditions. 

Now the outer limit of the leading-order inner expansions for u, and ug must match 
onto the Hankel functions in the wave region. This implies that, at leading order in F, 
u, and ug must have rPm-' behaviour in the limit r + co. Therefore in the outer region 
we start our expansions for u, and ug with Hankel functions at O(Fm+'). If a formal 
expansion is carried out for the inner region, we see from (1 5)-( 18) that it proceeds by 
first obtaining the fields at a given order, and then obtaining w at that order from the 
continuity condition (19). To obtain u, and ug to order F2n for some integer n, one need 
only know w to order FZ(n-l). The continuity condition (19) then gives w at order FZn. 

Since the eigenvalue equations are linear in u, and uo, the amplitude of the leading- 
order solution given by (32) for r < 1 and (33) for r > 1 is not specified uniquely, and 
at higher orders in the perturbation expansion it is possible to add to the solution at 
that order a component of the leading-order eigenfunction. To specify the 
eigenfunction uniquely, we impose the condition that the coefficients of rrn-' in the 
expansions of u, and uo in the limit r + 0 are zero at all orders in F except the leading 
order. This then fixes the amplitude and phase of the eigenfunction at all orders in F. 
Then, without reference to the outer expansion, one can see that the velocity 
components u, and ug remains +7t out of phase with each other at all subsequent orders 
in F in  the inner expansion, and therefore w remains real up to the order in F at which 
the matching conditions with the wave region must be taken into account. 

Matching (33) onto (37) and (38) to determine the amplitude of the gravity waves in 
the outer expansion gives 

Then matching the out-of-phase J, terms in the Hankel functions (37) and (38) back 
onto the inner solution at O(Fzm) gives a contribution to the inner solution of the form 

0 = -iBrm-'; uo = Bymp1, (40) 

where B is determined from A and the properties of the Hankel function in the limit 
R+O. It is given by 

As discussed above, to make the expansion procedure well defined, the expansions 
for u, and uo in r < 1 are to be o(rm-l) for r 6 1, and hence we must add to (40) 
functions of form (33) to ensure continuity of u, at r = 1. All other contributions to u, 
and ug at all orders up to and including FZm contribute only to the real part of w ,  and 
not to the growth of the instability. 

To calculate the growth rate of the instability, it is therefore sufficient to consider the 
velocity fields 

rm-l for r > 1 
u, = (42) 1 rPm-l - i BF2m(rm-1 - rpm-l) for r < 1, 

for r < 1 

- ir-m-l + BFZm(rm-l + F - l )  for r > 1. 

irm-l 
(43) 
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Returning to the jump condition (19), we obtain 

which is consistent with the results of Kop’ev & Leont’ev (1983) in the case f = 0. 

4. Numerical eigenvalue calculations 
We now turn to investigating the growth rates of the instability at values of F which 

are not sufficiently small that the growth rate can be obtained by asymptotic analysis 
at small F. To do this, we employ numerical means to solve for the basic state and the 
eigenfunctions and eigenvalues, as F is gradually increased, for various values of the 
azimuthal mode number rn. 

4.1. ~urnerical technique 
We start by considering techniques for solving numerically the basic equations (8) and 
(9) for the basic-state variables U and h. The numerical difficulties arise in that both 
r = 0 and r = 00 are singular points of the system, and we can only apply boundary 
conditions there by making use of some expansion of the solutions for small r and large 
r respectively. Given initial guesses for h(0) and h(co), the basic-state equations can 
then be integrated to r = 1, and iteration on h(0) and h(00) using Newton’s method is 
employed to make h and v continuous across the vortex boundary r = 1. In r > 1, the 
solution is exponentially decaying at large r, and so the far-field form of the solution 
is factored out from the numerical integration, so that the numerically computed 
variables remain of order unity throughout the range of integration. The details of the 
implementation of the numerical algorithm for obtaining the basic states are given in 
Appendix A. 

We now turn to the disturbance equations. The analysis of the eigenvalue equations 
is simplified by noting that the amplitude of the eigenfunctions is irrelevant, and that 
from (19) only the ratio v,/vo on either side of the vortex boundary is required to 
compute the eigenvalue w. As for the basic state, both r = 0 and r = 00 are singular 
points of the equations, and some use must be made of the asymptotic form of the 
solution in these limits to apply the appropriate boundary conditions, which are 
boundedness at r = 0 and evanescence as r + co. Again, as in the case of the basic state, 
the equations for the disturbances are integrated from r = 0 and r = 00 using starting 
series, and w is then iterated to satisfy the matching condition (19) at r = 1. The details 
of the implementation of the numerical algorithm for obtaining the eigenvalues are 
given in Appendix B. 

4.2. The basic state 
Before discussing the nature of the instability found for vortices with a single radial 
discontinuity in potential vorticity, it is instructive to examine the way in which the 
basic states themselves depend on the parameters of the problem: F and f. 

In figure 1, the basic-state velocity and height profiles are shown, as a function of 
radius, for F = 0.2, and for three families of vortex: 

(i) cyclones, with potential vorticity in the vortex of the same sign as the 
background value - velocity and height profiles are shown for f = 0.1, 0.2, 0.3, 
0.4 and 0.5; 

(ii) anticyclones with potential vorticity in the vortex of the opposite sign to the 
background value - velocity and height profiles are shown for f = - 0.1, - 0.3, 
-0.5, -0.7 and -0.9; 
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FIGURE 1. Basic-state velocity and height fields: F = 0.2. (a) Velocity for f = 0.1,0.2,0.3,0.4 and 0.5. 
The velocity decays more rapidly with r as f is increased. (b) The corresponding height field as a 
function of r .  The depression at r = 0 increases asfis increased. (c ,  d )  As (a ,  b) but withf= -0.1, 
-0.3, -0.5, -0.7 and -0.9. The velocity decays more rapidly with increasing I f l ,  and the surface 
elevation at Y = 0 increases with increasing I f / .  ( e , f )  As (a ,  b), but withf= -1.1, - 1.2, - 1.3, -1.4 
and - 1.5. Again, velocity decays more rapidly with r as I f /  is increased, and the surface elevation at 
r = 0 increases as I f 1  is increased. 

(iii) anticyclones with potential vorticity in the vortex of the same sign as the 
background value ~ velocity and height profiles are shown for f = - 1.1, - 1.2, 
- 1.3, -1.4 and -1.5. 

The velocity and height profiles in all cases are much as expected from the analysis 
for F < 1. Within the vortex (i.e. r < 1) the velocity increases almost linearly with r, 
reaching a maximum value of approximately 0.5 at r = 1. Outside the vortex the 
velocity decays with r ,  at first almost as r-l, and eventually decays more rapidly with 
r at larger r. Cases with larger values of If1 exhibit more rapid decay with r than those 
with smaller values of Ifl. In the height field, cyclones correspond to depressions of the 
height field (figure 1 b), whereas anticyclones with potential vorticity of the same sign 
as the background correspond to elevations (figure I f ) .  A transition between the two 
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FIGURE 2. Basic-state velocity and height fields: F = 2.5. Other details as in figure 1, except that 
in this case the surface elevation decreases with increasing If1 in cf). 

limits is observed in the case of anticyclones with potential vorticity of opposite sign 
to the background value (figure 1 d ) .  

In figure 2, the basic-state velocity and height fields are shown for the same values 
off  as in figure 1, but now with the Froude number F = 2.5. The cyclones now 
correspond to much more severe depressions of the free surface than was the case at 
F = 0.2, and the velocity within the vortex has decreased relative to its value at F = 0.2. 
In the case of anticyclones with potential vorticity of opposite sign to the background, 
the velocity at the boundary of the vortex has not been reduced significantly from its 
value at F = 0.2, and in some cases has risen above that value. The transition between 
depression and elevation as f i s  varied from - 0.1 to - 0.9 is now clearly seen in figure 
2(d).  Finally, in the case of anticyclones with potential vorticity of the same sign as the 
background, the velocity at the boundary of the vortex is seen to have decreased 
relative to its value at F = 0.2, with the effect becoming more pronounced at larger 
values of I f / .  

Finally, in figure 3, the basic-state velocity and height fields are shown for F = 5.0. 
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FIGURE 3. Basic-state velocity and height fields: F = 5.0. Other details as in figure 2. 

They serve to reinforce the trends observed from F = 0.2 to F = 2.5. In particular, in 
the case of cyclones, the layer depth at the centre of the vortex is now only about one- 
quarter of its value far from the vortex, whereas in the case of anticyclones with 
potential vorticity of the same sign as the background, the layer depth at the centre of 
the vortex can exceed five times the layer depth far from the vortex. 

4.3. Results of the eigenvalue calculations 
The growth rate of the instability of the axisymmetric vortex depends on three 
parameters: the Froude number F; the Rossby numberf-'; and the azimuthal mode 
number of the instability m. 

We begin by investigating the growth rates of the instability in the case of infinite 
Rossby number (f = 0). This limit is most similar to the study of Broadbent & Moore 
(1979), except here we take the vortex to have uniform potential vorticity, rather than 
uniform vorticity as they did. 

Figure 4(a) shows the growth rates of the instability for Froude numbers from 0 to 
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FIGURE 4. Axisymmetric vortex withf = 0. (a) Growth rates of the instability (solid lines) with growth 
rates predicted in the small-Froude-number limit (dashed lines). (b) Real parts of the eigenfrequencies 
Re w / m  (solid lines) and V(1) (dashed line). 

5 and for mode numbers m = 2, 6, 12. Solid lines are growth rates obtained from the 
numerical eigenvalue calculation, and dotted lines are the growth rates given by the 
low-Froude-number analysis (equation (44)). The graph is plotted on a log-log scale, 
so that at low Froude number the slope of the lines is 2m. Mode 2 is found to be the 
most unstable, and its growth rate increases more slowly with Froude number than 
the growth rates at higher mode numbers. The numerical eigenvalue calculations 
are apparently reproducing the eigenvalues obtained from the low-Froude-number 
limit with growth rates down to and we can be confident that numerical 
algorithm used to integrate (1 3) and (14) is performing adequately with the tolerances 
prescribed. The real part of the eigenfrequency is shown in figure 4(6). It is always 
bounded between 0 and m x V( l), apparently approaching rn x V( 1) at large m. 

We now turn to investigating the instability at non-zero f .  In particular, it is 
important to note that for f between 0 and - 1 the vortices are anticyclones with 
potential vorticity of opposite sign to the background potential vorticity. Forf> 0 the 
vortices are always cyclones, and for f < - 1 they are anticyclones with potential 
vorticity of the same sign as the background. In all cases withf+ 0, we expect the effect 
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FIGURE 5. Growth rates of instability for axisymmetric vortex withf = f 0.1, & 0.5, f 1 .O. Labels on 
curves correspond to values of m. In (u) and (b) dashed lines correspond to the casef= 0. 

of background rotation to inhibit the instability if the real part of the eigenfrequency 
is below I f / .  We therefore start by investigating the effect on the instability of 
background rotation with values of I f 1  = 0.1, 0.5 and 1.0. 

In figure 5 ,  the growth rates of the instability are shown in each case. Figures 5(a) 
and 5(b) correspond to the casesf = 0.1 and f= -0.1 respectively. At small Froude 
number, the growth rates are similar to those withf= 0. However, as F is increased, 
the instability at small mode numbers becomes inhibited for f = 0.1, but not for 
f = - 0.1. Figures 5 (c) and 5 ( d )  show the growth rates of the instability for,f = 0.5 and 
f= -0.5 respectively. The case I f 1  = 0.5 is significant because, at small Froude 
numbers, the mode m = 2 is marginally stable - i.e. it is unstable for I f 1  < 0.5, and 
stable for If1 > 0.5. In the casef= 0.5, mode m = 2 turns out to be stable for all F, 
whereas forf = -0.5 modem = 2 becomes unstable for non-zero F, but with the growth 
rate of the instability increasing as the sixth power of Froude number, at small Froude 
number, rather than the fourth power. The inhibition of the instability at large Froude 
numbers in the case of positivefis now more pronounced than forf = 0.1, with modes 
up to m = 12 being stable for F = 5.0. Finally, figures 5(e)  and 5 ( f )  correspond to 
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FIGURE 6. Real parts of the eigenfrequency for axisymmetric vortex with f =  f O . l ,  f0.5, 1.0. 
Labels on curves correspond to values of m. Dashed lines correspond to V(1), the azimuthal velocity 
at the boundary of the vortex. 

f = 1 .O and f = - 1 .O. With I f 1  = 1 .O, mode m = 4 is now marginally stable, and in both 
cases it remains stable for all Froude numbers. However, the growth rates of the other 
modes remain markedly different in the two cases, with the maximum growth rate for 
f =  1.0 over all Froude numbers being of order whereas for f = - 1.0 growth 
rates of order lo-’ are observed for large F. The main conclusion to be drawn from 
figure 5 is that the magnitude offis not the principal factor in determining the growth 
rate of the instability. 

The real part of the eigenfrequency, divided by the mode number m, is shown in 
figure 6 for each of the cases shown in figure 5. In general, vortices with f > 0 
experience a very rapid decrease in w/m as F is increased, whereas those with 
0 >f 2 - 1 experience only a moderate decrease in w/m or, in the case f = -0.5, an 
increase in o/m. This means that the effect of the inertial cut-off frequency will be felt 
more strongly when f > 0, as w falls belowf, and the eigenmode is no longer unstable 
as F is increased. 

Forf-  1 it appears that the cyclones have instabilities with only very weak growth 
11 F L M  280 
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FIGURE 7. Growth rates and real parts of eigenfrequency forf= - 1.25 and - 1.5 

rates, if at all, and it seems likely that increasing f still further will continue to reduce 
the growth rates, at the same time requiring larger and larger m for the instability to 
exist at all. However, for f - - 1, the anticyclones still have comparatively large growth 
rates. To investigate the regime f < - 1.0, figure 7 shows the growth rates of the 
instability, and the real part of the eigenvalue, for f = - 1.25 and f =  - 1.5, and for 
mode number m = 4, 6 and 12. In these cases, the instability at moderate mode 
numbers m becomes inhibited at larger Froude numbers, and has much in common 
with the cases o f f>  0. Similarly, the real parts of the eigenfrequency, and the vortex 
boundary velocity, decrease significantly as F is increased. 

The instability is summarized for allfand F in  figure 8. In figure 8(a) the maximum 
growth rate of the instability taken over all mode numbers rn is shown as a function 
of Fandf. One can see that the maximum growth rate of the instability appears to grow 
without bound for increasing Froude number only in the range 0 2f2 - 1.0. This is 
the range in which the potential vorticity in the vortex is of the opposite sign to the 
background potential vorticity. Outside this range, when the potential vorticity within 
the vortex is of the same sign as the background potential vorticity, the instability is 
inhibited at low mode numbers, which otherwise tend to have the largest growth rates, 
and the maximum growth rate of the instability over all Fis  quite small - less than lo-' 
for f = 0.5 and - 1.5. The mode number m of the fastest growing mode is shown in 
figure 8(b), confirming that the mode number of the fastest growing mode becomes 
quite large as Fis increased for f outside the range [0, - 1 . O ] .  Indeed, with f = - 1.5 and 
F = 5, the mode number of the fastest growing mode is 27. 

We turn now to an explanation of the difference in behaviour of the instability 
between cyclonic and anticyclonic vortices. At low Froude number, a difference 
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between positive and negative f exists in expression (44) for the growth rate of the 
instability in the F -+ 1 limit. The difference is a factor of ( w - f ) / ( w + f ) ,  which is 
smaller if w andfhave the same sign than it is if they are of opposite sign. Since w is 
always positive, this factor means that anticyclones are always more unstable to this 
type of instability than cyclones. The difference lies in the nature of the coupling 
between the vortical region and the wave region. This difference is small, however, and 
amounts only to a constant factor. It cannot explain why low-wavenumber 
disturbances to cyclonic vortices are stabilized as the Froude number is increased, 
whereas low-wavenumber disturbances to anticyclonic vortices are destabilized. 

The key to understanding the difference lies in the nature of the basic states. For 
small F, the azimuthal velocity at the vortex boundary is always 0.5. Since the wave on 
the boundary of the vortex is a Rossby wave, we expect it to propagate in a pseudo- 
westward direction - i.e. with a real frequency between 0 and m x V (  1) in the case of 

11-2 
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FIGURE 9. Location of turning point for all 0 < F < 5 and - 1.5 < f < 0.5. 

a vortex of unit radius. Therefore the azimuthal velocity at the boundary of the vortex 
sets a bound for the real part of the eigenfrequency. 

One explanation for the fact that, for a given mode number, eigenmodes with 
comparatively high frequencies will be more unstable is that they are less influenced by 
the inertial cut-off w = Ifl. While this is one explanation, it is not the only one, and is 
probably not the most significant. Regardless of the inertial cut-off frequency, we 
would still expect higher-frequency eigenmodes to be more unstable than lower- 
frequency modes, because at higher frequencies the interaction between vortical and 
gravitational motions becomes stronger. 

To see this, first recall that we expect the growth rate of the instability to depend on 
the strength of coupling between the Rossby wave, on the vortex boundary, and the 
gravity waves, found distant from the vortex boundary. The character of the 
eigenmodes changes from being Rossby-wave-like to gravity-wave-like for r of the 
order of the ‘sonic radius’, at which the intrinsic angular phase speed of disturbances, 
wrlm - V(r) ,  is equal to the gravity wave phase speed F-1H’’2(r). At a given F and m, it 
follows that, the larger the value of w ,  the smaller r will have to be to achieve a given 
angular phase speed, and hence the closer the sonic radius will be to the boundary of 
the vortex. We should expect this to lead to an enhanced coupling between the Rossby 
wave on the vortex boundary and the gravity wave beyond the sonic radius in cases 
where w is comparatively large. 

Taking w = m x V( 1) - an approximation which is valid to leading order in m for 
large m - the position of the sonic radius as a function of F andfis shown in figure 9. 
At small F, the position of the sonic radius is independent off,  and can be shown to 
be at r = 2F-l. However, at larger F, figure 9 shows clearly that the turning point 
moves closest to the boundary of the vortex in the cases - 1 < f < 0 - precisely the 
cases in which the strongest instability is observed. 

The results of the eigenvalue calculations may be summarized as follows. In the 
absence of background rotation, the eigenmode with rn = 2 is always unstable in the 
range 0 < F < 5, and is probably unstable for all F. With background rotation present, 
low-mode-number eigenmodes may be unstable at small Froude numbers, but become 
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stabilized as the Froude number is increased. This is because the real part of the 
eigenfrequency decreases as the Froude number is increased, and eventually falls below 
Ifl, at which point the instability mechanism no longer exists. 

From a practical point of view, we have almost certainly identified those cases in 
which this instability is sufficiently vigorous that it might be observed in nature, and 
these all occur whenfis between - 1.0 and 0. Thus, strong instabilities are observed 
only in cases where the potential vorticity in the vortex is of the opposite sign to the 
background potential vorticity. However, in a three-dimensional fluid, it can be shown 
that vortices with potential vorticity of the opposite sign to the background will be 
inertially unstable, using a modification of Ooyama’s (1966) analysis for the $plane 
(see Appendix C ) ,  and so the instability presented in this paper will be of interest in 
those cases only if it turns out to be stronger than the inertial instability. To investigate 
the relative strengths of the two instabilities, the maximum growth rates of inertial 
instability were obtained for f= -0.5, and shown in figure 10, together with the 
growth rate of the fastest growing mode (m = 3) of the present instability. It can be 
seen from figure 10 that the inertial instability is always stronger than the present 
instability over the range 0 < F < 5 in the case f= -0.5. The present instability is 
therefore likely to be significant only nearf = 0 and f = - 1 .O, which are the boundaries 
in parameter space for the existence of inertial instability. However, a t f =  - 1.0 the e- 
folding time of the instability is approximately 50 vortex rotation times, and a t f =  0 
is it more than 100 vortex rotation times, and so the present instability is too weak to 
be of practical significance at the boundaries of the region of inertial instability. Thus 
it seems that inertial instability is always likely to be the more vigorous instability in 
the regions of parameter space where the e-folding time of the present instability is 
small enough that it could have been observed in nature. 

However, we are interested not only in cases of practical significance, but also in 
whether coupling between vortical motions and gravity waves exists at all Rossby 
numbers, or whether there is a value of If1 above which the instability ceases to exist, 
at least for some range of F, and in which cases the vortical motions could then be 
separated from the gravity waves in the problem, in a sense to be made more precise 
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in 46. The next section, $5, therefore examines this instability for arbitrary f’and F in 
the limit m % 1. The WKBJ analysis has the added advantage that it assumes a priori 
that w %.f. Therefore any distinction between cyclones and anticyclones which can be 
accounted for by the WKBJ analysis must be due to the general nature of the basic 
state, and the strength of Rossby wave-gravity wave interactions on it, and any 
distinction not accounted for by the WKBJ analysis may be regarded as due to the 
specific effects of the inertial cut-off frequency. 

5. The limit of large mode number 

equation for u,: 
We start by writing (13) and (14) as a single second-order ordinary differential 

d2u0 dv 
-+P(r)A+Q(r)v,  = 0, 
dr2 dr 

where 

(45) 

where here A ,  B, C and D are given by (15)-(18). Equation (45) must be solved 
subject to certain boundary conditions. These are regularity at r = 0, and an 
evanescence/radiation condition as r 00. The second condition requires some 
care. Any unstable mode must be exponentially weak at infinity, and therefore an 
evanescence condition should suffice. However, we shall for convenience state the 
radiation condition, bearing in mind that when the eigenfrequency becomes slightly 
complex, perhaps at some high order in the expansion parameter m, the solution of (45) 
acquires some weak exponential decay. 

Following standard WKBJ analysis, we write 

vo = d ( y )  eim@(r), (47) 

where now d ( r )  is an amplitude function and $(r) is a phase function, made rapidly 
varying through the factor m in the exponent. Substituting (47) into (45) gives 

d” + 2imt,h’d’ + i rn$”d - m2$”d + P(r) (d’ + imyYd) + Q(r )  .d = 0. (48) 

In general $ and d must be expanded in inverse powers of the WKBJ expansion 
parameter m. The decomposition of uo into d ( r )  and $(r) is not unique. A small 
(O(m-’), say), correction to u0 through $ could just as easily be made by an O(m-’) 
correction to d .  However, the decomposition can be made unique, and a great deal 
more convenient to work with, if we insist that d ( r )  and $(r) naturally take the roles 
of amplitude and phase in that, if { d ( r ) , $ ( r ) }  is a solution of (48), then so is 
{dw) - $‘(r)>, 

Equation (48) can then be separated into two equations: 

d” - rn2$’2d‘ + P(r)  d + Q ( r )  d = 0, 

2 $ ’ d ’ + v d + $ ‘ d P ( r )  = 0, 
(49) 

(50) 
and (50) can be integrated at once to 

2lnId]+Inlt,h’l+ P = 0. (51) s 
We now start our asymptotic analysis of (49). Since we know from (34) that (0 is of 

order m, at least in the limit F < 1, it is convenient to work with an intrinsic angular 
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frequency c defined by c = w/m. Bearing Kelvin's expression w = (m - 1)/2 in mind, 
and in the spirit of asymptotic expansions, we must extend c in the form 

c = c,+m-'c,+ .... (52) 

In fact, it will turn out that c has not only an algebraic expansion in m-l, but also 
requires terms exponentially small in m to describe the instability. 

From (15k(18) we know that, expanding in m, P(r) is O(l), while Q(r) takes the form 

which can, by virtue of the expansion (52) have terms of O(m2) and O(m). From (49), 
at O(m2), the equation for $, is 

(-co+fJ/r)2F2 1 
$;2 = _ _  

1 + F 2 h  r2 '  (54) 

The expression for do can be obtained from (51). Notice that, since P(r)  is regular 
for all r =+ 0, there is a singularity in the expression for do at a radius r = rc where 
$;(rc) = 0. We can see at once that, for co =+ 0, there is at least one such radius, since 
$2 N - F 2  < 0 as r+O,  but $h2 - c:F2 > 0 as r +  co. 

Now, v 0 -  - ~ ( r ) e i ~ ( ~ o + ~ - ' ~ i + . . . ) ,  and since we will require an expression for both the 
amplitude and phase of v,, we must obtain expressions for both $o and $l. The 
equation for is obtained from (49) at O(m): 

Now, the nature of the solutions for ve differs significantly on either side of r = rc. 
On one side, and in particular in the limit r + co, the solutions are oscillatory (for real 
co), whereas on the other side, and in particular in the limit Y + 0, they are growing and 
decaying exponentials. We refer to the radius r = rc as the 'turning radius', and in the 
following analysis we shall assume that there is precisely one turning radius for the 
vortex. There is always precisely one turning radius for F 4 1, whatever the magnitude 
of the Coriolis parameterf, and hence the assumption includes the basic state in the 
' quasi-geostrophic ' limit, in which one might expect interactions between vortices and 
gravity waves to be weakest. All vortices investigated numerically in the previous 
section were found to have precisely one turning radius. 

The expansion (47) for v,  is not valid in the neighbourhood of r = rc, since $; is zero 
there, and so by (51) d would be unbounded. We must therefore rescale the equations 
in the neighbourhood of r = rc and derive equations for the perturbation expansion in 
this inner asymptotic region. In the vicinity of r = re, we have 

(56) 

where a, is a positive constant. Rescaling the radial coordinate as x = pn2/3(r-rc) the 
leading-order equation for vg from (45) becomes 

Q(r) = m2a,(r - r,) + . . . , 

d2v0 
dx2 
~ + a l  xve = 0. (57) 

Equation (57) has solutions v0 = Ai( -u: /~x) ,  Bi( - u: /~x) ,  where Ai(z) and Bi(z) are Airy 
functions (Abramowitz & Stegun 1965). 
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Four asymptotic regions have now been established, and the method of matched 
asymptotic expansions will now be used to relate the solutions in the different regions. 
The asymptotic regions are: 1, r > r,;  2, r - r ,  = O(rn-’I3); 3, 1 < r < re;  4, 0 < r < 1. 

5.1. Region 1: r > r, 
As r + co, we can place conditions on the branch of square root to take in the solution 
of (54) by imposing a radiation boundary condition, so that $; > 0 as r - t  co. This 
immediately implies, through the matching condition in the limit x +  co, the ratio of 
Ai to Bi to take in the solution of (57). The expansions of Ai(z) and Bi(z) in the limit 
z + co then give, through the matching conditions, the ratio of the growing to decaying 
exponential solutions to (45) for 1 < r < re. 

5.2. Region 2: r - r ,  = O(rn-”’) 

For z+- 00, the Airy functions take the asymptotic forms 

Ai( - z) - ~-‘/2,7-1/4 sin (33/2 +in), 4 

Bi( - z) - n-112z-1/4 cos (;z312 +in) . 
(58)  

(59) 
Therefore, if we write uo = aAi( - aii3x) +psi(  - L Z ~ ~ ~ X ) ,  matching to a radiating field 

In the limit x - t -  co we have 
as x +  00 implies a/P = i. 

Now if we let 

and 

then, for 1 < r < rc, we have 

vo = A ( ~ ) ( a e m Y b + ~ i + b e - ~ ~ ( i - ~ i ) ,  (64) 

where the ratio of b to a is to be determined by the matching conditions to the Airy 
function region. Now the Bi( - a;I3x)-term is, by (61), exponentially growing away 
from r = r,, i.e. it is exponentially decaying with radius in 1 < r < Y,. It therefore 
matches to the term b e-myo-yl in the solution in the region 1 < r < r,. Correspondingly, 
the Ai( - a:l3x)-term matches to the solution which is exponentially growing with 
radius, that is, the term aem y o + y l .  Hence by considering (60) and (61) in the limit z --f 00, 
the ratio of exponentially growing to exponentially decaying terms in the region 
1 < r < r, satisfies the relation a / b  = i/2. Up to an arbitrary amplitude, therefore, this 
completes the solution in the range r > 1. 

5.4. Region 4: 0 < r < 1 
In the range r < 1 ,  the crucial boundary condition is regularity at r = 0. This implies 
that only solutions of the form 

are possible, where !Po is given by (62), and !PI by (63). 

(65) vo = dem’fb+Y, 
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5.5. Jump conditions at r = 1 
The final task, which determines the eigenvalue c at successive orders, is to apply 
continuity of v, and h at r = 1, which is expressed in the continuity condition (19). 

To find vrr we may use to sufficient accuracy 

dv, im 
dr r r' 
---v 

For r < 1, this leads to 
3 1 = i + O(m-1). 
V r  r=l- 

On the other hand, for r > 1, we obtain 

where here Y(1) = Yo(l)+m-lYl(l). (69) 
Recalling that Y < 0, this takes the asymptotic form for large m: 

There are algebraic corrections to these terms, but because of our judicious 
decomposition of A and +, (70) expresses the principal exponential terms. In 
particular, then, it has the correct expression for the leading-order (exponentially 
small) imaginary part of vo/vT.  

Returning to the continuity condition (19), at O(m), we simply have 

c, = $1). (71) 

c, = - iff, (1 - fi  "(I)), (72) 

At the next order, we obtain 

where H ,  = 1 + F2h(l). 
There are three things to note about (72). Firstly, the correction to the real phase 

speed of the disturbance is negative, and is in accordance with Kelvin's expression (34) 
in the limit F 4 1. This is consistent with the claim that the disturbance on the 
boundary of the vortex has locally the character of a Rossby wave, with a pseudo- 
westward phase speed. The second thing is that the imaginary correction to c is always 
positive, corresponding to a temporally growing disturbance of form e-imet at any 
value of F or f. The growth rate is exponentially small in m, consistent with the 
expression found using energy conservation arguments by Papaloizou & Pringle (1987) 
for a different form of basic state. Since the asymptotic limit in this case is of a 
particular type of disturbance (i.e. large m), rather than a particular type of basic state, 
as it was in the F < 1 analysis of 93, we conclude that all basic states which satisfy the 
assumption of a single turning point are unstable, at least to large-mode-number 
disturbances. Finally, it can be shown by standard analytical methods that the 
expressions for the growth rate of the instability in the limits m >> 1 (72) and F 4 1 (44) 
agree in the joint limit m >> 1 and F < 1. 

5.6. Comparison with numerical eigenvalue calculations 
In addition to comparison with the analysis in the low-Froude-number limit, we can 
also test the validity of the general expression (72) given for the growth rate of the 
instability in the WKBJ limit against the numerical eigenvalue calculations. Growth 
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rates of the instability against mode number are shown in figures 11 and 12. The basic 
states chosen all have Froude number F = 2.5 in figure 11, and F = 5 in figure 12, with 
varying values off indicated on the graphs. Overall there seems to be good agreement 
between the WKBJ analysis (dashed lines) and the numerical eigenvalue code (solid 
lines), even for quite moderate values of m. 

A significant distinction is to be drawn betweenf> 0 and f < 0. For given F, the 
magnitudes of Yo(l) and Yl(l) are always greater when f > 0 than when f < 0. It 
follows immediately that the instability will be weaker for f > 0 in the limit of large m. 
This is significant, in that it is dependent entirely upon the nature of the basic state, and 
independent of the effects of inertial cut-off, which are assumed not to apply, since the 
WKBJ analysis assumes thatfis of order unity, whereas w is of order m 9 1. Where 
the numerical eigenvalues are in good qualitative agreement with the WKBJ prediction, 
any differences between them for different values off must be directly attributable to 
the nature of the basic state alone, and independent of the effects of the inertial cut- 
Off. 

For small m and small Ifl, the eigenmodes are unstable, and their growth rates are 
broadly in line with the values predicted by the WKBJ analysis. However, as I f 1  is 
increased, the eigenmodes become stable at small m. Since this effect is not predicted 
by the WKBJ analysis, it must be because the eigenfrequencies are comparable with the 
magnitudes of the inertial frequency, and hence the inertial cut-off is significant. 

As a heuristic way of thinking about the behaviour of the growth rates, I propose 
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FIGURE 12. Comparison of eigenmode growth rates (solid lines) with WKBJ predictions 
(dashed lines), F = 5.0, for rn = 0 to 25.  

that in the region where they are seen to be increasing with increasing m, it is because 
the real part of the eigenvalue is increasing. The growth rate is therefore dominated by 
effects of the inertial cut-off. Examination of figures 11 and 12 shows that, once the 
instability has set in, this range of m tends to be quite small. However, in the range 
where the growth rate of the instability decreases with m, I propose that the WKBJ 
analysis is broadly valid in this limit, and the dependence of the growth rate of the 
instability on f is determined largely by the nature of induced basic state, and not 
directly by the effect of the inertial cut-off. Even in the range where the inertial cut-off 
is dominating the lower eigenmodes, the nature of the basic state is clearly important, 
in that it sets the real part of the eigenfrequency, and hence determines whether the 
eigenmodes are unstable or not. 

In conclusion, the axisymmetric vortex is always unstable, but as F and If I are 
increased, larger and larger values of m must be taken to obtain the instability. Almost 
all the asymmetry between cyclones and anticyclones can be explained in terms of the 
basic state. At large m, the nature of the basic state determines the strength of Rossby 
wave-gravity wave interactions, and at small m it determines whether and by how 
much the real part of the eigenfrequency will exceed If I ,  and hence how significantly 
the instability is affected by the inertial cut-off. 
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6. Discussion 
The instability of an axisymmetric vortex with monotonic potential vorticity has 

been investigated analytically and numerically. When there is a single radial 
discontinuity in the potential vorticity, the vortex is always unstable at small Froude 
number, provided the mode number rn > 1 + 2 I . f l ,  and is always unstable at large mode 
number rn for all values of F andf. Numerical eigenvalue calculations showed that the 
growth rate of the instability is typically of order lo-’ or less, except when 0 >f> - 1, 
and the potential vorticity in the vortex is of the opposite sign to the background value. 
In a three-dimensional flow, these vortices are subject to inertial instability. Recalling 
that the vortex rotation time was used to non-dimensionalize the timescale for this 
analysis, this means that, except in inertially unstable situations, 10’ vortex rotation 
times are typically required for one e-folding time of the instability. In typical 
geophysical applications, vortex rotation times are at least one day (in many cases 
much more than one day), and hence the instability grows very much more slowly than 
typical timescales of evolution of the vortical flow, which is likely to distort the vortex 
significantly on the timescale of several vortex rotation times. In the case - 1 <f < 0, 
where the present instability is strongest, inertial instability also exists in the three- 
dimensional case, and it was shown that inertial instability is generally stronger than 
the present instability, except nearf= 0 and - 1, where the present instability is quite 
weak. The present instability is therefore unlikely to be of any practical interest in 
geophysical fluid dynamics. On the other hand, the destabilization of cyclones and 
stabilization of anticyclones in the presence of planetary Rossby wave radiation (the 
p-effect), is likely to be a much more significant factor than the present instability. This 
phenomenon is often invoked to explain the persistence of anticyclones over cyclones 
in the Jovian atmosphere (Nezlin & Snezhkin 1993). 

The WKBJ analysis of 4 5 elucidates the mechanism of the instability. Disturbances 
of small amplitude to the boundary of the vortex have retrograde phase progression, 
consistent with their being regarded as Rossby waves on the vortex boundary. The 
amplitude of the eigenfunction associated with the Rossby wave at the vortex 
boundary decays exponentially with radius both inward towards the vortex centre and 
outward to infinity. However, at a critical radius, the eigenfunction changes from being 
exponentially decaying to oscillatory, and this implies that the Rossby wave on the 
vortex boundary is coupled, exponentially weakly, to a gravity wave beyond the critical 
radius. The gravity waves must also decay exponentially with radius, but much more 
gradually than the decay betwen the vortex boundary and the critical radius. 
Moreover, if the imaginary part of the eigenfrequency is small compared with the real 
part, the condition of exponential decay of the eigenfunction beyond the critical radius 
is equivalent to imposing an outward radiation condition on the gravity waves which 
would be obtained by considering only the real part of the eigenfrequency. 
Consequently, we may regard the instability as due to a coupling between a Rossby 
wave on the vortex boundary and a gravity wave beyond the critical radius. For a 
review of instability theory in terms of coupling between different wave modes, see 
Sakai (1989). 

In a provocative paper, Leith (1980) introduced the concept of a ‘slow manifold’ for 
the shallow-water equations. The slow manifold, if it exists, is an invariant sub- 
manifold of the shallow-water equations, of one-third the dimension of the phase space 
of the shallow-water equations, and tangent to the quasi-geostrophic manifold at zero 
Rossby number. Moreover, on the slow manifold, the entire velocity field and the 
entire height field at any instaant in time can be uniquely determined from the potential 
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vorticity distribution at that instant in time. Under the assumption of linearized 
perturbations to an axisymmetric vortex, it is straightforward to see that, if the 
potential vorticity distribution determines the entire velocity and height fields, a 
perturbation to the boundary of the form of a single azimuthal mode number 
disturbance must give rise to motion in the form of an eigenmode of the vortex. Now 
we know that, in unbounded shallow water with constant f ,  two bounded eigenmodes 
exist - one temporally growing mode' and one temporally decaying mode. Moreover, 
it can be shown that if one choice is assumed to lie on the slow manifold, then the other 
will lie on another slow manifold, and that both slow manifolds will contain some 
gravity-wave-like structures in the tails of the eigenmodes beyond the critical radius. 
We conclude that the concept of a slow manifold for the shallow-water equations is 
inherently non-unique, and that it cannot be truly slow, in that it must contain gravity- 
wave-like structures, albeit at exponentially small amplitude at small Rossby number. 

Note that, if it had turned out that the instability did not exist at very small Rossby 
number, then the temporally growing and temporally decaying modes would coalesce, 
and would not contain a gravity-wave-like tail. In that case, the slow manifold would 
be unique and truly slow. Thus, the significance of the persistence of the instability at 
very small growth rates for all non-zero Froude and Rossby numbers is crucial to 
establishing the non-existence of a unique slow manifold, or a slow manifold devoid of 
all gravity-wave-like motion. These ideas are expounded in greater detail in Ford 
(1993), and Ford, McIntyre & Norton (1994). 

This work was carried out while the author was a PhD student, supported by a 
studentship from the United Kingdom Natural Environment Research Council. The 
WKBJ analysis was stimulated by discussions with Professor J. B. Keller and Professor 
G. R. Flierl, while the author was a fellow at the Woods Hole Summer Program in 
Geophysical Fluid Dynamics, which is supported by a grant from the United States 
National Science Foundation. Professor M. E. McIntyre made several helpful 
suggestions as the work progressed, and Dr D. G. H. Tan and an anonymous reviewer 
suggested several improvements to the manuscript. 

Appendix A. Numerical solution of the equations for the basic state 

that V and h tend to zero as r + 00. By manipulation of (8) and (9), one obtains 
We consider first the singular point r = 00. In this limit, we will impose conditions 

Imposing evanescence conditions as r + co, we note that the nonlinear right-hand 
sides of (A 1) and (A 2) will be of small order compared with u and h in the limit r 'r co. 
A convenient form of solution for r + 00 is therefore 

h = K,(ar) H(r), 

C = K,(ar) V(r), 

where H(r)  and V(r) tend to some finite non-zero limits H, and V, respectively as 
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r +  co, and a =  Flfl is the Rossby deformation radius for this problem. Differential 
equations for H and V are 

(aV+F2fH3 
dV - K,(ar) 
dr K,(ar) 

~ d H  - - -(f K,(ar) V+aH+-V2), K l ( 4  
dr K,(ar) r 

from which it follows that 

Then, given an initial estimate for H,, and taking some R % a-l, we take H = H, 
at r = R, and (A 7) as the relationship between H and V at r = R. We can then 
integrate (A 5 )  and (A 6) backwards to the boundary of the vortex. 

The sole exception is in the casef = 0, where the form of the solution for 8 is known 
outside the vortex boundary: 

U = A / r ;  h = -A2/(2r2) ,  (A 8) 

where A is an arbitrary constant, and hence for r > 1, u and h are known in terms of 
the constant A rather than the constant H,. 

In the vicinity of r = 0, h - O(1) and v - O(r) as r + 0. In this case, simple power 
series expansions in r of the form 

h(r) = ha + h, r2 + h, r4 + h, r6 + . . . , 
8(r) = u1 r + u3 r3 + u5 r5 +v, r7 +. . . 

are sufficient to give h(r) and 8(r) at some small, non-zero r, given a guess h, for h(0). 
We can then integrate (8) and (9) forwards in r to the boundary of the vortex. 

At the boundary of the vortex, we impose continuity of h and 8. A Newtonian 
method was used to iterate on ha and H, (and ha and A in the case o f f=  0) until the 
discontinuities in hand 8 across the boundary fell below some prescribed tolerance. To 
employ a Newton method, the differential equations (8), (9), (A 5 )  and (A 6) and the 
starting series (A 7), (A 9) (A 10) were differentiated with respect to the parameters h, 
and H,, so that the variation of 8 and 15 with respect to ha and H, on either side of 
the vortex boundary could be obtained (in the case f= 0, it is trivial to obtain 
expressions for the derivatives of the boundary velocity and height with respect to A ) .  
For F < 1, good initial guesses for h, and H, or A were obtained from a matched 
asymptotic analysis, with ha given by C, due to (22) and (28), and H, = -ifdue to 
(25), or A = t.  

Appendix B. Numerical solution of the eigenvalue problem 
We start by considering the limit r + 0. Here, we may take v,  = rm-l+  k, rm+l + . . . . 

Regularity at r = 0 then implies that uo = irmP1 +k, rmfl + . . . . The constants k, and k, 
can then be obtained from the eigenvalue equations, and 

(B 1)  

The constant K,  depends on the eigenvalue w.  Hence, given an initial guess for w ,  the 
ratio of z), to uo is known in the limit r --z 0 from the series (B 1). The ratio is used to 

u,/ug = - i + K, r2 + O(r4). 
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initialize the r-integration of the eigenvalue equations with a starting value of r = lop4, 
and in all eigenvalue calculations the starting series (83) was terminated at O(r2). The 
first neglected term is of order r4, so the error involved here is of order Using this 
procedure, the ratio v,/vg is thus known just inside the vortex boundary.7 

In the limit r - t  co, since the background flow is exponentially small there, we have 

h - Hg)(Ar) (B 2) 

(B 3) 

with exponentially small corrections, where 

h2 = (w2 - f 2 )  F2,  

and the type of the Hankel function is chosen to satisfy the radiation condition. 
Rearranging (lo), (11) and (12) we have a relationship between o, and vg through 

dh 1 
dr r 

(f2-w2)vr+iw-+-iimJh = 0, 

dh 1 
dr r 

( f2-w2)vo-f---mwh = 0. 

In the case where w2 - f 2  we can still find a non-singular expression for the ratio v,/vg 
by expanding the Hankel function representation of h. Again, the amplitude of h is not 
important - it is sufficient to know the ratio of the velocities v,/u8. 
‘.Note that there is no need to integrate the disturbance equations in from the 
radiation far field of the Hankel function. This is fortunate, since, if w2 - f 2 ,  this would 
require a very large range of integration indeed. Equations (B 4) and (B 5 )  assume 
negligible basic-state velocity and perturbation height fields, but not a far-field form of 
the wave field. Therefore, it is sufficient to integrate in from a radius where the 
departure of the basic state from a resting layer of uniform depth is sufficiently small. 
In all cases shown here, the integration was from a point at which u and h were less than 

Since the decay rate of the basic state with r is indepdneent of the eigenvalue, the 
required outer limit of the integration for the eigenfunction equations in the region 
r > 1 is fixed for given F and I f / ,  and decreases as F and If1 increase. 

Given an initial guess for w ,  we must iterate on w to satisfy the continuity equation 
(19). Here it is not so convenient to use a Newton method, owing to the non-analytic 
behaviour of the solution at w = +J However, iteration from two initial guesses using 
linear interpolation to predict the location of the root was found to perform reasonably 
well, typically converging in 5 or 6 iterations. 

At low Froude number, we supply an initial guess for w by considering the Kelvin 
modes on a circular incompressible vortex, with frequency given by (34). This can be 
used as a first guess q, for the eigenfrequency, and a second guess can be supplied 
which is not too far away (q,-0.05, say). 

At low Froude number, growth rates are typically very low, and this places a strain 
on the numerical accuracy required. In all cases presented here, NAG routines were 
used for integrating the ODES for both the basic-state problem and the eigenvalue 
problem, using double-precision arithmetic. In the exterior of the vortex, the differential 
equations are stiff, and a backward differencing method was used. A forward 
differencing method was used for the interior of the vortex. Tolerances of were 
specified in all numerical integrations. In the disturbance problem, the computational 

t I thank an anonymous reviewer for pointing out that the starting value of r was taken to be too 
large for consistency with other error estimates in an earlier version of the paper. 
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values of the eigenfunctions were kept of order unity throughout the ranges of 
integration by applying the scaling function (1 + (Fr)2m)-1r-1i2 e-’Vr to the variables in 
the exterior of the vortex (where A, is the real part of A, and h is given by (B 3)), and 
the function P - l  to the interior variables. The very low tolerance specification, 
together with the rescaling to make the computational variables of order unity 
throughout the domains of integration, and starting integrations from sufficiently 
small and large r that errors involved are of order means that we can have some 
confidence in the imaginary parts of the eigenvalues down to around although 
a rigorous analysis of the cumulative error has not been attempted. 

Appendix C. Inertial instability 
In this appendix, we derive the conditions for an axisymmetric vortex on anf-plane 

to be inertially unstable, and obtain an expression for the maximum growth rate of the 
instability. 

We have been studying vortices with uniform potential vorticity in the shallow-water 
equations. The definition of potential vorticity must be modified to apply to the 
continuously stratified case, and the velocity and height/pressure fields which we have 
found for axisymmetric vortices in shallow water will not necessarily correspond to 
vortices with uniform potential vorticity in a continuously stratified system. In general, 
solution of the hydrostatic equations for axisymmetric vortices with specified potential 
vorticity requires considerable effort (Thorne 1985). However, for the purposes of the 
present discussion, we are concerned with approximate estimates of the growth rate of 
inertial instability. Therefore, we shall take the same velocity field as in the shallow- 
water equations, identify the height field in the shallow-water equations with the 
pressure in the stratified fluid equations, and compute the growth rates of inertial 
instability for a Boussinesq fluid with uniform buoyancy frequency N 2  and a basic state 
independent of height. 

We consider a Boussinesq hydrostatic fluid with constant buoyancy frequency N2. 
Assuming linear disturbances of form , f ir)  ei(nz-*Jt) , the disturbance equations are 

- iwv, - (f+ 2 ~ / r )  + dp/dr = 0, 

- iov, + (f+ dc/dr + ~ / r )  = 0, 

inp - 8 = 0, 

(I  / r )  (d /dr) (rv,) + inw = 0, 

-ioO+N2w = 0, 

where here p is the pressure, w is the vertical velocity, 0 is the buoyancy, and all other 
symbols are as previously defined. 

After re-arranging to obtain a single disturbance equation for uT, we have 

Using standard techniques, it can be shown that 
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Thus, w2 > 0, and linear stability is assured, if 

On the other hand, if (f+ 2V/r) (f + dv/dr + t i /r)  < 0 somewhere in the domain, at 
r = Ti, say, we consider the test function which is unity at r = r, and zero everywhere 
else, except over a range of order E ,  where the test function varies from 0 to 1 or from 
1 to 0. Then, by making the vertical wavenumber n large compared with c’, we have 

wLin = Min(f+2:)(f+$+:) < 0 

and hence we can obtain the maximum growth rate of the instability 
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